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TECHNICAL NOTE D-1824

USE OF AERODYNAMIC PARAMETERS FROM NONLINEAR THEORY IN
MODIFIED-STRIP-ANALYSIS FLUTTER CALCULATIONS FOR
FINITE-SPAN WINGS AT SUPERSONIC SPEEDS

By E. Carson Yates, Jr., and Robert M. Bennett
SUMMARY

The flutter characteristics for two untapered wings, one having 15° sweep
and aspect ratio 5.34, the other having 30° sweep and aspect ratio 4,16, have
been investigated analytically for Mach numbers up to 3.0. The calculations were
based on the modified-strip-analysis method of NACA Research Memorandum I57L10
with the required aerodynamic parameters computed from linear theory, from shock-
expansion theory, and from Busemann second-order theory. The results were com-
pared with flutter experiments over the Mach number range. Supersonic flutter
speeds were satisfactorily predicted by the modified strip analysis employing
aerodynamic parameters computed from the nonlinear theories but were high when
supersonic linear theory was used. Flutter speeds calculated for subsonic Mach
numbers by use of linear-theory aerodynamic parameters were in good agreement
with experimental values.

INTRODUCTION

Difficulties in formulating and using rigorous aerodynamic theories for
unsteady, three-dimensional, compressible flow have led to wldespread use of
approximate methods for evaluating the oscillatory aerodynamic loads required
in flutter analyses. One of these approximate methods is the modified strip

analysisl presented in reference 1. This method, which is limited to relatively

11n this method, spanwise distributions of steady-flow section lift-curve
slope and local aerodynamic center for the undeformed wing are used in conjunction
with the "effective" angle-of-attack distribution resulting from the assumed
vibration modes in order to obtain values of section 1lift and pitching moment.
The steady-state aerodynamic parameters may be obtalned from any suitable theory
or experiment, the criterion being that the best method to use is the one that
ylelds the most accurate steady-state load distributions. Circulation functions
modified on the basis of loadings for two-dimensional airfoils oscillating in com-
pressible flow are employed to account for the effects of oscillatory motion on
the magnitudes and phase angles of the 1ift and moment vectors. Some character-
istics of resulting oscillatory section 1ift and pitching moment are examined
briefly in the appendix of the present report.
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low reduced frequencies, was applied in reference 1 to & number of swept and
unswept wings for Mach numbers from zero to as high as 1.75. The results showed
generally good agreement with experimental flutter data, thus indicating the use-
fulness of thils comparatively simple procedure especlally for trend-study and
preliminary-design information. It is quite obvious, however, that such an
approximate method is intended to supplement rather than to supplant the more
rigorous theoretical techniques.

The aerodynamic coefficlents employed in all of the calculations of refer-
ence 1 were obtained from linearized aerodynamic theory. However, use of 1lin-
earized aerodynamlic theory in the modified strip analysis may be expected to
yield less accurate flutter characteristics as Mach number increases. First, it
is well known that for wings of finite thickness, linearized aerodynamic theory
predicts pressure distributions and hence aerodynamic-center positions with
decreased accuracy at the higher supersonic Mach numbers. (See refs. 2 to 4, for
example.) Furthermore, the results of reference 5 indicate that as Mach number
increases, the calculated flutter speed and frequency become more sensitive to
small changes in local aerodynamic-center position. It is thus apparent that the
calculation of accurate flutter characteristics at the higher supersonic Mach
numbers will require the use of aerodynamic parameters obtained from the more
accurate nonlinear aerodynamic theories or from experiments (ref. 6).

The primary obJjectives of the present report are to illustrate the use of
nonlinear aerodynamics in conjunction with the flutter-asnalysis method of refer-
ence 1 and to examine the accuracy of the resulting flutter characteristics. For
these purposes supersonic flutter characteristics have been calculated for two
untapered swept wings by the method of reference 1 with the required aerodynamic
coefficients obtained from linear theory, from Busemann second-order theory, and
from shock-expansion theory. The calculations cover Mach numbers up to 3.0 and
are compared with the experimentel flutter data given in reference 7 for these
wings. The results of extensive supersonic flutter calculations for these wings
by piston theory and by quasli-steady second-order theory are presented in refer-
ence 8.

For completeness some calculations have been made for these two wings at
subsonlic Mach numbers by the modified strip method of reference 1 using linear-
theory aerodynamic coefficlents. The subsonic flutter characteristics of these
wings have also been Investigated by use of the subsonic kernel function method

(results unpublished).

SYMBOLS
8. n nondimensional distance from midchord to local aerodynamic center (for
? steady flow at zero angle of attack) measured perpendicular to elastic
axis, positive rearward; fraction of semichord perpendicular to
elastic axis (called acp 1n ref. 1)
bg semichord measured streamwise



c
la,n

My, n

®p, 1

dC'L

da

dcm
da

local lift-curve slope for a section perpendicular to elastic axis in
steady flow at zero angle of attack

derivative with respect to angle of attack of local pitching-moment
coefficient measured sbout leading edge of a section perpendicular
to the elastic axis in steady flow at zero angle of attack

ratio of calculated by nonlinear theory to

(cla,n)gD (cla;n)QD

calculated by linear theory

ratio of (cma,n)gD calculated by nonlinear theory to (cma,n)gp

calculated by linear theory

b

reduced frequency, —V—

Mach number

Mach number component normal to leading edge

total mass of wing panel

flutter speed

volume of air within a cylinder having streamwise chord as base diameter
and panel span as height

distance measured from wing root along elastic axis, fraction of elastic
axis length

m

mass ratio for wing panel, -

©

alr density
circular frequency of vibration at flutter

circular frequency of kth natural (coupled) vibration mode

circular frequency of ith uncoupled bending vibration mode

circular frequency of first uncoupled torsional vibration mode

amplitude of the oscillatory section 1lift-curve slope

amplitude of the oscillatory section pitching-moment-curve slope,
pitching moment measured about pitch axis



phase angle between oscillatory section 1ift and pitch angle measured

o from free-stream cirection

8am phase angle between oscillatory section pitching moment and pitch
angle measured from free-stream direction

Subscripts:

2D two dimensional

3D three dimensional

DESCRIPTION OF WINGS

General Description

The flutter calculations of this report were made for two of the untapered,
swept wings for which experimental flutter data were given in reference 7. One
wing was swept back 15° and had an aspect ratio of 5.34; the other was swept back
30° and had an aspect ratio of 4.16. (See fig. 1.) These wings were cut from
0.04k1-inch-thick aluminum or magnesium sheet and had chords of 2 inches measured
perpendicular to the leading edge. As shown in figure 1, the leading and trailing
edges of both wings were beveled l/h inch to form a 2.05-percent-thick symmetrical
hexagonal alrfoil section perpendicular to the leading edge. For these homogene-
ous untapered wings, both the elastlc axis and the local centers of gravity were
taken to be at midchord.

In the investigations of reference 7, two magnesium models and two aluminum
models of each planform were flutter tested. Since flutter calculations are
presented herein for all of these models, they have been arbitrarily designated
as models A, B, C, and D for convenient reference. (See table I.) Note specif-
ically that models A, B, and C are the same as models A, B, and C of reference 8.

Mode Shapes and Frequencies

Uncoupled beam-type vibration modes were employed in all flutter calcula-
tions. Since the wings investigated herein were homogeneous and untapered, the
uncoupled mode shapes and frequencies for both planforms were considered to be
the same as those for a uniform cantilever beam. The uncoupled bending-mode and
torsion-mode frequencies for 15° wing models A and C and for 30° wing models A
and C were calculated from the simple formulas for a uniform cantilever beam. To
allow for slight differences in stiffness between ostensibly identical models A
and B, the uncoupled-mode frequencies for model B were obtained from those for
model A by multiplying by the ratio of the measured first-natural-mode frequency
of model B to the corresponding frequency of model A. That 1s, for model B
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The uncoupled-mode frequencies for all models are presented in table I. For each
model, the frequency of the second bending mode is close to that of the first
torsion mode, and both are near the measured second- and third-mode natural
(coupled) frequencies given in reference 7. (See also table I herein.)

The first three measured natural (coupled) mode shapes for these wings pre-
sented in reference 9 and the corresponding node lines (fig. 1) indicate that the
second and third natural modes involve a high degree of bending-torsion coupling,
particularly for the 30° wing. In addition, the mode shapes show that some camber
occurs in some of the modes. Since the natural modes are not closely approxi-
mated by uncoupled modes, a question arises with regard to the suitability of
uncoupled modes for the flutter analyses. Reference 1 indicated that the modified
strip analysls could be formulated to employ coupled vibration modes; furthermore,
a camber mode could also be employed. These provisions, however, are not included
in the method as presently programed; therefore, a direct comparison of coupled-
mode and uncoupled-mode strip-theory calculations was not feasible. However,
little difference occurred between coupled-mode and uncoupled-mode subsonic
kernel-function calculations for these two wings (results unpublished).

In comparison, the flutter analyses for the swept wings of reference 10 also
indicated little difference between flutter speeds obtained from coupled natural-
mode and uncoupled beam-mode calculations by the subsonic kernel function method,
even though the natural modes for those wings contained considerably more camber
than the modes for the present wings. The results of both types of kernel-
function calculations as well as of modified-strip-theory calculations (with
uncoupled modes) were in good agreement with experiment (ref. 10).

Finally, it may be noted that even when uncoupled vibration modes are used
in the analyses of swept wings, some camber is included in the deflections along
streamwise sections. For uncoupled modes, wing sections normal to the elastic



axis are assumed to oscillate without distortion. Therefore, if these sections
do not 1lle in the free-stream direction, some camber deformation of streamwise
sections appears.

FIUTTER CALCULATIONS

The modified-strip-analysis method employed herein 1s described in refer-
ence 1. The procedure of this report differs from that of reference 1 only with

regard to the method of calculating the aserodynamic parameters ®la.n and 8¢,
2

For the wings of this report, values of Cla.n and ac,n were computed by three
2

methods for supersonic Mach numbers and two methods for subsonic Mach numbers as
indicated in table II.

In most of the flutter calculations by the modified-strip-analysis method,
three uncoupled vibration modes were used - first and second bending and first
torsion. However, the third bending mode was included 1n one calculation for
15° wing model B for comparison with the three-mode results.

Supersonlc Speed Range

Linearized theory.- In the supersonic speed range, aerodynamlic parameters
were calculated by the linearized lifting-surface method of reference 11, since
the leading edges of both wing planforms were supersonlc at all Mach numbers cal-
culated. For the 15° wing, the required distributions of Cla n and 8c,n for

2
wing sections normal to the elastic axis were initially obtained from corre-

sponding values for streamwlse sections by application of simple sweep theory as
described in reference 1. BSubsequently, the vslues of and 8c,n Were

®la,n
reevaluated by direct integration of lifting pressure along sections normal to
the elastic axis. Results of these two evaluations are compared in figure 2.

The close agreement at all Mach numbers was anticipated because the wing was
untapered and swept only 15°. The small differences shown would be expected to
cause negligible change Iin the calculated flutter characteristics. The two pre-
ceding statements would not be valid, however, for a highly tapered wing with
significantly greater sweepback, as was demonstrated in reference 10. The values

of cza,n and ac,n obtained by use of simple sweep theory (fig. 2) were used

in the present flutter calculations for the 15° wing because they were available
earlier than values obtained by direct integration. For the 30° wing, however,
all calculations of Clg.n and ac,n by supersonic linearized aerodynamic

J

theory (fig. 3) were made by direct integration of lifting pressure along sec-
tions perpendicular to the elastic axis.

Nonlinegr theories.- No general theory is known to exist for evaluating the
nonlinear aerodynamic effects of finite wing thickness and alrfoil shape on the
supersonic steady-flow aerodynamic loads on finite-span wings. For use in the
present flutter analyses, therefore, such nonlinear effects on the distributions

6



of ®lg.n and dc,n 8are approximated by employing two-dimensional nonlinear

J
theory to modify the spanwise distributions of aerodynamic parameters calculated
from three-dimensional linearized theory. Approximations of this type were also
employed in references 12 and 13. Specifically herein, the values of section
lift-curve slope Cla.n obtalined from three-dimensional linear theory were

2

multiplied by the ratio of ®le.n obtalned from two-dimensional nonlinear theory

2
to %o n obtained from two-dimensional linear theory; that is,
s ,

(“l,n)

(czain>2D,linear

2D, nonlinear

(cla:n)jD,nonlinear (Cl“’n)3D,linear

K (c (1)
L( Za’n>5D,linear

Similarly for the section pitching-moment slope Cmy
2

(“me,n)

2D, nonlinear

c = c
( ma,n) D, nonli ¢ ( ma,n) D,linear
3D,nonlinear ( ma:n)2D,linear 3D,
= Ky (c (2)
M( m“’n)BD,linear
Using values of c;  and cp  obtained from equations (1) and (2), the
2 )

local aerodynamlc-center positions were calculated from

(acfn)BD,nonlinear

-5 (Cm“’n>5D,nonlinear Y (3)

(ac; n )ED, nonlinear (cla, n )3D nonlinear
2

In all of these calculations, the two-dimensional aerodynamic parsmeters were
computed for wing sections normal to the elastic axis and for the Mach number
component normal to the leading edge. This Mach number component was chosen
because the nature of the pressure distribution over the wing is dominantly
affected by whether the leading edge is subsonic or supersonic. (See also
ref. 1.)

The two nonlinear two-dimensional aerodynamic theories employed herein are
the complete shock-expansion theory as presented in reference 14, and the Busemann
second-order theory as used in references 12 and 13. Steady-state aerodynamic
load distributions calculated by shock-expansion theory for wings with sharp
leading edges have been shown to agree well with measured values at the higher
supersonic Mach numbers. (See ref. 15, for example.) Although the Busemann



second-order theory lacks the theoretical exactness of the complete shock-
expansion theory, the simplicity of application of the second-order theory would
make it attractive for use in flutter analyses if the results can be shown to be
sufficiently accurate.

The shock-expansion theory is directly applicable only to sharp-edge airfoils
at Mach numbers for which the leading-edge shock wave is attached. These limita-
tions did not affect the present applications to the 15° and 30° wings because
both were sharp edged and because the leading-edge bevel on both yielded wedge
angles small enocugh to permlt shock attachment at relatively low supersonic Mach
numbers. For wings with round leading edges, however, the shock-expansion theory
as presented in reference 14 can be applied approximately by employing the arti-
fice of the sonic wedge tangent on the airfoil nose (ref. 16). Compared with
values obtained from two-dimensional linear theory, the values of Cma,n obtained

from shock-expansion theory are significantly altered in the present application
(KM < l.OO); however, the ®la.n values were only slightly affected, differing

i

in the present cases by less than 2 percent (l.OO < Kjp, < 1.02). The airfoll sec-

tions normal to the leading edge were identical for the 15° and 30° wings so that
the same shock-expansion-theory calculations were gpplicable to both. The values
of a were calculated from the followi equation:
( c’n)ED,shock expansion ne ed
(cma,n)

. 2D, nonlinear 1 (4)
( l“in)ED,nonlinear

(ac:n)QD,nonlinear B

and are shown in figure 4. It can be seen that even for the present thin wings
(2.05 percent thick measured perpendicular to the leading edge), the shock-
expansion theory yields aerodynamic-center positions significantly forward of
those indicated by linear theo a = 0). Distributions of
Y o4 (( c:H)QD,linear )

(ac:n)jD,shock expansion obtained from these values are compared with those
from linear-theory calculations in figures 2 and 3. Values of
(c ) are not shown in figures 2 and 3 because of their

%, 1/3p, shock expansion
closeness to the linear-theory curves.

Unlike the shock-expansion theory, the Busemann second-order theory causes
no change at all from the linear-theory value of the lift-curve slope (KL = l.OO)

and yields a change in Cmg. n (KM < l.OO) that is a function only of Mach number
)

and alrfoil cross-sectional area. Thus the problem of airfoil nose shape is not
directly encountered even though the theory is strictly applicable only to sharp-

nose sections. Values of a for the airfoil (normal to the
( C:n)ED,second order (

leading edge) of the present wings were calculated from equation (4) and are
shown in figure 4. The aerodynamic centers calculated by the Busemann second-
order theory are appreclably forward of the positions indicated by linear theory,
but are not as far forward as the positions obtained from the shock-expansion
theory. The values of (ac,n)gp obtained from Busemann second-order theory for

8



an NACA 65A002 airfoil are also shown in figure 4 to illustrate the effect of
differing cross-sectional areas for two airfoils with approximately the same
maximum thickness.

Subsonic Speed Range

Flutter calculations for both the 15° and 30° wings at subsonic Mach numbers
followed the procedure outlined in reference 1. In particular, the required dis-

tributions of ®le.n were computed by the lifting-line method of reference 17
)

and are shown in figures 2 and 3. Note specifically that this method implicitly
places the local aerodynamic centers along the streamwise quarter-chord line, so
that, for the present untapered wings, 8. pn = -1/2. The importance of this

J
restriction on local aerodynamic center and hence on section pitching moment, was
examined for the 15° wing. For this purpose, some flutter calculations for this

wing employed distributions of ¢ and a calculated by subsonic lifting-
Za’n c,n

surface theory, essentially that of reference 18. These values of . n and
2y

ac,n are compared with the values obtalned from the lifting-line theory in fig-

ure 2. For all three subsonic Mach numbers and for all values of 1, “lo.n
J

sbtained from lifting-surface theory is shown to be slightly higher than the cor-
responding values obtained from lifting-line theory. Moreover, the aerodynamic-
center positions indicated by lifting-surface theory are farther forward than
those associated with lifting-line theory, particularly near the wing tip. The
results of reference 5 indicate that both of these differences would be expected
to have depressing effects on the calculated flutter speeds when compared with
flutter speeds obtained by use of lifting-line theory.

RESULTS AND DISCUSSION

A summary of pertinent conditions for all the calculations and an index to
she results are provided in table II. The flutter speeds and frequencies cal-
sulated by the modified-strip analysis employing aerodynamic parameters obtained
From both linear and nonlinear aerodynamic theories are compared with experimental
rlutter data from reference 7 in figures 5 and 6 for the 15° wing and in fig-
ires 7 and 8 for the 30° wing. In the calculations of all the flutter speed and
Flutter frequency curves of figures 5 to 8, the wing properties and flow density
smployed were those associated with the experimental flutter points shown. Since
2gch experimental point (from ref. 7) represents a different model and a different
lensity, the calculations for each model and density were limited to a range of
lach mumber which bracketed the experimental value. The range of Mach number
sovered for each model is indicated in table ITI. Because of the discontinuous
shange of mass ratlio and modal frequencies at the extremities of these Mach num-
er ranges, the calculated flutter characteristics also show discontinuities at
chese locations.



Supersonic Speed Range

Results of the flutter calculations which employed aerodynamic parameters
computed from linearized supersonlc-flow theory are included in figures 5 to 8.
Both the flutter speeds and frequencles calculated from these values of cy 1

a,

and 8c,n are appreciably higher than experiment for the 15° wing all through

the supersonic range and for the 30° wing at the higher supersonic Mach numbers.
This observation is in agreement with the results of references 5 and 6 in which
supersonic linear theory characteristically predicted aerodynamic-center positions
that were too far rearward and these in turn characteristically yielded flutter
speeds that were too high. However, for the 30° wing the agreement of the cal-
culations with experiment at low supersonic Mach numbers 1s good. The larger
sweep angle of thils wing decreases the Mach number component normal to the leading
edge and increases the portion of the wing area that is behind the Mach line from
the root leading edge. Hence, at a given low supersonic Mach number the local
aerodynamic centers for this wing are farther forward than those for the 15° wing
(for example, compare figs. 2(e) and 3(d)). The calculated flutter characteris-
tics for the 30° wing are therefore less sensitive to small variations in 8c,n-

(See ref. 5.)

For both wings the differences between experimental flutter speeds and those
calculated from linear-theory aerodynamics progressively increase with increasing
supersonic Mach number. For these wings the elastic axes and local centers of
gravity were at midchord so that the aerodynamic centers could never move rear-
ward of them. Hence, no change of sign 1n the calculated section pitching moment
occurred as it did for the 45° swept wing of reference 10, and the accompanying
sharp upward break of calculated flutter speed with increasing Mach number
(ref. 10) was not encountered here. Nevertheless, for the present moderately
swept wings the local aerodynamic centers did move rearward to the vicinity of
the elastic axis and the local centers of gravity even at relatively low super-
sonic Mach numbers. Under these conditions accurate flutter prediction by the
modified strip method even at moderately low supersonic speeds requires the aero-
dynamic centers to be located more accurately than is possible by use of linear-
ized aerodynamic thecory.

and a computed

The flutter calculations incorporating values of ¢ c,n

from shock-expansion theory are also shown in figures 5 to’8. The agreement
between the calculated and experimental flutter speeds is good over the Mach num-

ber range. Thus, the more accurate determination of cza n and especially 8c,n
>

by shock-expansion theory yields conslderable improvement in the calculated flut-
ter speeds.

Figures 5 to 8 also include flutter characteristics calculated for the 15°
and 30° wings with 8c,n Velues computed from Busemann second-order theory. Over
the Mach number range, the calculated flutter speeds are in falr agreement with
experimental values for the 15° wing. Corresponding results for the 30° wing
show good agreement with experiment. These calculated flutter speeds, however,
are higher than those calculated by uslng shock-expansion theory as would be
expected (ref. 5) since the aerodynamic centers obtained from Busemann

10



second-order theory (figs. 2 and 4) are rearward of the values given by shock-
expansion theory. The Busemann second-order-theory correction to the aerodynamic-
center position is a function only of the airfoil cross-sectional area and of two
Mach number dependent coefficlents which are given, for example, in equa-

tions (3-11), section E, of reference 19. As indicated previously, this theory
may be applied more expediently than the shock-expansion theory, and hence may be
preferable in cases for which some conservativeness may be sacrificed for greater
simplicity in the calculations.

As stated previously, most of the present flutter calculations employed
three vibration modes (first torsion and first and second bending). However, a
single calculation for the 15° wing at M = 2.0 (figs. 5 and 6) shows that
inclusion of the next mode (third bending) results in little change in the cal-
culated flutter characteristics.

For Mach numbers above 1.65, the present results from the modified strip
analysis may be compared with flutter calculations based on piston theory and on
quasi-steady second-order theory for the same two wings (ref. 8). 1In refer-
ence 8, best overall comparisons with experiment were obtained from the quasi-
steady second-order-theory calculations which included the effects of finite wing
thickness. For the 15° wing, the latter calculated flutter speeds are essentially
the same (within 3 percent) as those obtained herein with Busemann second-order
theory. For the 300 wing, however, the best results from reference 8 compare more
closely (within 9 percent) with the present calculations which employed shock-
expansion theory.

Subsonic Speed Range

The subsonic flutter speeds and frequencles calculated for the 15° and 300
wings employing lifting-line aerodynamics are presented in figures 5 to 8, and
for the 15° wing using lifting-surface theory in figures 5 and 6. For all cases
the agreement of the calculated flutter speeds with experiment is good although
the calculated frequencies are somewhat low. The flutter speeds computed for
the 15° wing employing values of cla 0 and 8c,n calculated by lifting-surface

3

theory are somewhat lower than those obtained from values of ¢ and ac n

computed by lifting-line theory. This result was expected since %he local aero-

dynamic centers computed by lifting-surface theory are forward of those computed

by lifting-line theory, and values of e computed by lifting-surface theory
b

are larger than those computed by lifting-line theory. (See figs. 2(a), (b),
and (c).)

The good agreement between the measured subsonic and supersonic flutter
speeds and those calculated by the modified strip analysis (figs. 5 and 7) 1s of
added interest in view of the high degree of bending-torsion coupling that appears
in the natural vibration modes for both the 15° and 30° wings (refs. 7 and 9).

It appears that for these wings the accuracy of the modified-strip-analysis cal-
culations, which employed uncoupled vibration modes, was not adversely affected
by this pronounced coupling.

11



CONCLUSIONS

The flutter characteristics of two untapered swept wings have been inves-
tigated analytically for Mach numbers up to 3.0. The calculations were made by
a modified-strip-analysis method, employing aercdynamic parameters cobtained from
both linear and nonlinear aerodynamic theories. Results of the analyses and com-
parisons with experimental flutter data for these wings indicate the following
conclusions:

1. The modified-strip-analysis method employling aerodynamic parameters
obtained from shock-expansion theory, which includes the effects of airfoil shape,
yields flutter speeds that are in good agreement with experimental values over
the supersonic Mach number range. In comparison, the use of aerodynamic param-
eters calculated by the simpler Busemann second-order theory gives slightly higher
calculated flutter speeds. Flutter speeds from both calculations, however, are
in much better agreement with experiment than those obtained by use of linearized
aerodynamic theory even at the lower Mach numbers.

2. Subsonic flutter speeds calculated for these wings by the modified-strip-
analysis method with aerodynamlc parameters obtained from linearized theory are
in good sgreement with single experimental flutter points at Mach numbers

near 0.5.

Langley Research Center,
National Aeronautics and Space Administration,
Langley Station, Hampton, Va., April 22, 1963.
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APPENDIX

COMPARISONS OF OSCILLATORY AERODYNAMIC LOAD DISTRIBUTIONS CALCULATED
BY THE MODIFIED STRIP METHOD AND BY LINEARIZED

SUPERSONIC OSCILLATING WING THEORY

Reference 20 has shown that large spanwise variations in the amplitudes and
phase angles of section 1lift and pitching moment may occur near the tip of an
oscillating wing at supersonic speeds. These results have led to questions with
regard to the ability of the modified strip method to represent adequately the
distributions of oscillatory aerodynamic loading over the portion of & supersonic
wing which is influenced by a cut-off tip. In order to examine this question,
values of oscillatory section 1lift and pitching moment calculated by this modified
strip method have been compared with corresponding values obtained from supersonic
oscillatory lifting-surface theory (ref. 20). Expressions for the load distribu-
tion on a rectangular wing oscillating as a rigid body in supersonic flow were
presented in reference 20 and illustrated by calculations of the amplitudes and
phase angles of the section 1ift and pitching moment for a wing of aspect
ratio 4.0 oscillating in pitch at Mach number 1.3 (figs. 5 and 6 of ref. 20).
Calculations of the loading for these conditions have also been made by the modi-
fied strip method employed in the flutter calculations of the present report.
Since the loading expressions of reference 20 were based on linearized-flow
theory, the steady-flow aerodynamlic parameters employed in the comparative
modified-strip-analysis calculations were also obtained from linear theory - that
of reference 11. (See fig. 34(d) of ref. 1.)

The distributions of oscillatory aerodynamic parameters calculated by the
modified strip method and those from reference 20 (fig. 9 herein) show the same
general trends and magnitudes for both the amplitudes and the phase angles of
the section 1lift and pitching moment. The amplitudes of the oscillatory section
lift-curve slope calculated by the two methods are essentially identical, and the
corresponding phase angles differ by less than 6°. With regard to the pitching-
moment curves, however, it should be observed that the present combination of
Mach number (1.30) and pitch axis (41.3 percent chord) constitute a somewhat
sensitive condition for the modified-strip-theory calculation. Under these con-
ditions the local aerodynamic centers are rather close to the pitch axis over
much of the span and are actually behind the pitch axis over the inboard three-
fourths of the span. The moment arms and hence the pitching moments are there-
fore relatively small, and the errors resulting from the approximations inherent
in the modified strip method become apparent in both the amplitude and phase
angle of the pitching moment. Thus, the pitching-moment phase angles O am

(fig. 9(b)) indicated by the two calculations are very close together over the
outboard portion of the wing, but some differences appear inboard. Over the
inboard region, both calculations yield values of O,, near 180° so that the

corresponding quadrature components of the pitching moment (components in phase
with the angular velocity) are shown by both methods to be relatively small com-
pared to the components in phase with the angular displacement. However, the

15



inboard phase angles from the modified strip method are greater than 1800,
whereas those from reference 20 are less than 180°. Thus, over the inboard
region, the quadrature moment components from reference 20 would have positive
sign and hence would contribute to instability, whereas those from the modified
strip method would have negative sign and hence would contribute to stability.
In a case such as this, use of the modified strip method in a flutter analysis
would probably yield flutter speeds higher than corresponding values obtalned by
the method of reference 20. References 1 and 11, as well as the present report,
call attention to the errors in calculated flutter speeds which may occur under
such circumstances. If the pitch axis in the present calculation were farther
from the local aerodynamic centers, the comparison of pitching moments (fig. 9(b))
should be improved. The comparison should also be better at lower reduced
frequencies. (See ref. 1.)
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Section A-A

Figure 1.- Sketch of wing planforms showing measured node lines. All dimensions are in Inches
unless otherwise specified.
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